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Abstract—Most medium and large commercial buildings in
the U.S. are subject to complex electricity tariffs that combine
both Time-of-Use (TOU) energy and demand charges. This study
analyses the performances of different economic Model Predictive
Control (MPC) formulations, from the standpoints of monthly bill
reduction, load shifting, and peak demand reduction. Simulations
are performed on many simplified commercial building models,
with multiple TOU demand charges, and under various summer
conditions. Results show that compared to energy-only MPC, the
traditional method for dealing with demand charges significantly
reduces peak demand and owner bill, however, highlight a lack
of load shifting capability. A proposed incremental approach
is presented, which better balances the bill components in the
objective function. In the case study presented, this method
can improve monthly bill savings and increase load shifting
during demand response events, while keeping a similarly low
peak demand, compared to traditional MPC methods taking into
account demand charges.

Index Terms—Model Predictive Control, Time-of-Use tariff,
Demand charge, Commercial building, Peak demand

I. INTRODUCTION

The building sector in the U.S. accounts for 40% of
country energy consumption [1], and commercial buildings
are responsible for 36% of all U.S. electricity usage [2]. The
latter is getting increasing attention, due to a high potential for
energy saving and load shifting. Constituting a large portion
of the energy consumption of commercial building, Heating,
Ventilation and Air Conditioning (HVAC) systems represent a
primary target of control method research.

Model Predictive Control (MPC) recently emerged as a
state-of-the-art method in building energy management [3].
The ability of MPC to take into account future conditions
to drive the current system state makes it ideal for Demand
Response (DR). DR refers to the set of grid mechanisms to
shape the buildings electric load when market prices are high
or when the grid reliability is jeopardized [4], through either
financial incentives or electricity pricing structures.

Time-of-Use (TOU) tariffs, that define distinct price levels
for specific periods of the day, are widely used to incentivize
consumers to shift demand outside grid peak hours. In ad-
dition, Critical Peak Pricing (CPP) programs superimpose a
large increment in energy price to the basic TOU rates for
some strategic hours, generally decided a day in advance by

the grid utility. This known structure can directly be leveraged
by the MPC formulation to shift loads appropriately.

The monthly bill Bm ($) of a commercial building in the
U.S. is commonly made of fixed, energy, and demand charges:

Bm = Cfix+

Nm∑
h=1

ce[h] · E[h]+

NTOU∑
ρ=1

cd[ρ] ·max
j∈Hρ

{P [j]} (1)

where Cfix is an infrastructure charge ($), E[h] is the energy
consumed (kWh) by the building in period h, P [j] is the power
demand (kW) of the building in period j, Nm is the total
number of time periods in the month, NTOU is the number
of TOU demand charge periods, ce[h] is the cost of energy
($/kWh) at time h, cd[ρ] is the cost of demand ($/kW) for the
TOU period ρ, and Hρ represents the periods in the month
when the TOU demand charge ρ is active.

This paper investigates the effects of different economic
MPC methods optimizing Eq. (1), looking at both the building
owner and the grid utility perspectives, with a focus on
commercial buildings. Most of the MPC works encountered
in the literature focus on the energy component of Eq. (1)
[3]. When peak demand charges are tackled, the approach is
generally a "best-effort" manner, for it strives to reduce the
peak as much as possible at every control step.

In [5]–[7], MPC formulations include a maximum demand
penalty alongside the incremental energy consumption. The
coefficient of the demand component in the objective function
is either set to a single monthly cost of demand or a weight
whose tuning is not discussed in detail. The authors in [8]
present a stochastic optimization method that keeps the grid
power purchased below a defined demand charge threshold,
considering multi-peak periods. However, these aforemen-
tioned methods do not consider that the utility demand bill is
based on the highest peak of the entire month, in each TOU
period (if there are multiple). Given a reasonable optimization
horizon on the order of 6-24 hours, rather than the whole
month, it is therefore, incorrect to weigh the monthly demand
cost against only a day’s worth of energy cost in the objective.
This will bias the optimization to reduce demand as much as
possible each day, at the expense of a higher energy cost,
especially if a high peak demand has already been set earlier.
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Figure 1: Building RC thermal model

Therefore, this study also introduces an incremental ap-
proach for optimizing energy and demand costs with MPC,
which better accounts for the trade-off between energy and
demand costs during an optimization horizon, and considers
the general case of multiple TOU demand charge periods. Case
studies on a large range of commercial building scenarios are
carried out to highlight advantages and disadvantages of each
method.

II. SYSTEM MODELLING AND CONTROL

A. Commercial building model

The commercial building power consumption is modeled,
at each time instant t, as the combination of uncontrollable
demand Pnc(t) [kW] and flexible power demand of the Air
Conditioner (AC) unit uAC(t):

x(t) = Pnc(t) + uAC(t) ·
P capAC

kcop
(2)

where P capAC [kW] is the maximum thermal power capacity of
the AC unit (negative value), and kcop is the average Coef-
ficient Of Performance (COP) of the AC unit, considered to
be independent of ambient conditions. It is therefore assumed
that only the cooling electricity demand can be controlled.
Furthermore, the AC system is allowed to be continuously
controlled:

0 ≤ uAC(t) ≤ 1 (3)

The AC unit cools down the whole building, represented as
a single zone whose temperature evolves according to the
following equation [9] (see Fig. 1):

Ceq ·Ṫi(t) = uAC(t)·P capAC +Pnc(t)+
1

Req
·[Ti(t)−Te(t)] (4)

where Ti(t) and Te(t) are the internal and external temperature
at time t respectively and Ceq and Req are the equivalent
capacitance and resistance of the thermal zone model re-
spectively. In this model, the uncontrollable loads dissipate
electricity entirely as heat into the zone. Moreover, the sun
and human heat gain have not been modelled, for sake of
simplicity.

In order to model the thermal storage of the building internal
mass, a zone capacitance multiplier is applied to the air

capacitance [10]:

Ceq = kmass · Cair (5)

The thermal comfort of the commercial building occupants
must be ensured at any time t:

Tmini (t) ≤ Ti(t) ≤ Tmaxi (t) (6)

The chosen model simplifies drastically the behavior of real
commercial buildings, and would therefore never be used to
simulate a specific building accurately. However, rather than
modelling a specific commercial building very accurately,
this study intends to assess the grid-level impact of MPC
control methods. The model is therefore suitable enough for
this purpose, as it represents a generic commercial building,
containing both uncontrollable load and flexible demand.

B. MPC formulations

The building energy is managed by the MPC controller
that sets the AC power demand every 15 minutes. The afore-
mentioned building model is directly used to generate each
new set point, along with weather and load forecast, through
the solving of an optimization problem over a finite horizon
H . The traditional commercial economic MPC found in the
literature can be formulated as follow [3], [5]–[7]:

minimize
x

H−1∑
h=0

ce[h] · x[h] · dt+ kd · z (7)

s.t. discretized Equations (2) and (4)
constraints (3) and (6)
z ≥ 0

z ≥ x[h] ∀h = 0, . . . ,H − 1

where z is a slack variable used to model the maximum
demand in the horizon. In the common case where kd = 0,
the MPC only reacts to the energy component of the bill.

However, this formulation does not take into account the
possible multiple TOU demand charges that can occur for
some commercial tariffs. Moreover, it always tries to minimize
the peak demand in a short horizon H , without taking into
account the last peak it has already set during the month. The
above MPC formulation, therefore, overestimates the weight
of the demand cost in the horizon, particularly later in the
month.

This study therefore proposes a new formulation that in-
cludes an incremental form of the demand cost and that takes
into account multiple demand cost periods:

minimize
x

H−1∑
h=0

ce[h] · x[h] · dt +

NTOU∑
ρ=1

cd[ρ] · zρ (8)

s.t. discretized Equations (2) and (4)
constraints (3) and (6)
zρ ≥ 0 ∀ρ = 0, . . . , NTOU

zρ ≥ x[h]− xthrρ ∀h ∈ Hρ ∩ {0, . . . ,H − 1}



Table I: Description of the implemented MPC methods.

Objective
Scenarios

A B C.1 C.2

Energy X X X X
Peak best effort X
Incremental TOU Multi-Peak X X
Max demand prediction X

In this MPC formulation, zρ is a slack variable representing
the maximum demand in the corresponding TOU periods ρ
of the horizon H , and xthrρ is a peak demand threshold that
only penalizes demand cost if the horizon peak is larger
than this threshold. It could be set to the maximum peak
encountered since the beginning of the billing period, or to
a prediction of what will be the maximum demand during the
month. Therefore, xthrρ = max(xseenρ , xexpρ ) is the maximum
of xseenρ , the already seen maximum demand in Hρ, and xexpρ ,
the expected maximum demand in the billing period in Hρ.
We term this formulation as incremental because the objective
function represents the incremental portion of the monthly bill
for the given time horizon, in both energy and demand costs.

III. CASE STUDY AND DISCUSSION

This section presents a case study that highlights the impacts
of various MPC approaches on building owner bill, shift-
ing load potential and peak demand. The study consists in
multiple monthly simulations of commercial buildings energy
consumption. It intends to provide a qualitative analysis of the
grid-level effects induced by each of the control strategies.

Table I describes the MPC objectives and features imple-
mented in this case study. The first one, "A. Energy only", is
the most encountered in the literature and only optimizes on
the energy part of the bill, hence setting kd = 0 in Eq.(7). The
second one, "B. Peak best effort", strives to reduce the peak
demand in the MPC horizon, setting kd to the total demand
cost in Eq.(7). The method "C1. Incremental TOU Multi-
Peak" implements the optimization as in Eq.(8), setting xthrρ to
the maximum peak already encountered earlier in the month
and taking into account the multiple TOU demand charges.
Compared to the former, the method "C2. Incremental TOU
Multi-Peak with prediction" benefits from the knowledge of
the maximum demand that will occur during the month, stored
in xthrρ . Methods such as the one described in [11] could be
used for estimating this peak. For practical purpose of these
simulations, this peak forecast is retrieved from the simulation
results of method B.

Each MPC method is evaluated based the following metrics:

• Maximum peak demand: the maximum power demand
(kW) throughout the month, averaged over 15 minutes.

• Monthly bill: the bill ($) paid by the building owner at
the end of the month, according to Eq.(1).

• Load shifting capacity: the energy (kWh) consumed
during CPP DR events, initiated by the utility.

Table II: PG&E summer tariff rates - off-peak = week-days
10pm - 8am, week-ends & holidays, mid-peak = week-days
8am-12pm & 6pm-10pm, on-peak = week-days 12pm-6pm.

Energy ($/kWh) Demand ($/kW)
Time periods A-10 E-19 A-10 E-19

off-peak 0.134 0.085 0 0
mid-peak 0.163 0.111 0 5.18
on-peak 0.218 0.152 0 18.64
All time / / 18.26 17.57
CPP increment 0.9 1.2 0 0

Table III: Simulated buildings equivalent parameters

Parameter & data Retail Store Secondary School

Req [K/W] 4.311e−4 4.774e−5

Ceq [J/K] 1.4e7 1.5e8

kmass 4 / 8 3 / 6
P capAC [kW] -94.5 / -154 -595 / -735
kcop 3.5 3.5
Pnc(t) [kW] See Fig. 2 (left) See Fig. 2 (right)
Tariff A-10 E-19
Tmini (t) [◦C] 21 from 6am to 9pm, 16 else
Tmaxi (t) [◦C] 24 from 6am to 9pm, 30 else
Te(t) [◦C] See Fig. 3
CPP days 8th, 17th, and 27th of July

This study considers two different TOU commercial tariffs
of Pacific Gas & Electricity (PG&E), an electrical utility
in California (see Table II). Both tariffs have TOU energy
rates and a demand charge applied to all time periods of the
month. In addition, tariff E-19 includes TOU demand charges,
increasing peak demand prices during mid-peak and on-peak
hours. On top of these basic rates, PG&E can also trigger CPP
events from 2pm to 6pm.

Due to the simplicity of the model used for the simulations,
the results in this section represent the best-case scenario
that could be encountered in real-life applications. A major
hypothesis is to consider the same model for the MPC and
the simulated building. Though unrealistic, this is useful in
this case to mitigate the inherent inaccuracy of the control
model.

A. Building parameters and simulation data

The DOE Commercial Building Dataset [12] is used to
derive commercial buildings simulation parameters (Eq. (2),
(4)). This dataset gathers generic building information (e.g.
thermal envelope, zones size, uncontrollable load magnitude)
and schedules (e.g. occupancy, heating/cooling, internal gain)
for a wide range of commercial buildings. Two distinct build-
ings have been chosen for this study (see Table III):
• Retail store: a medium-size commercial building, made

of few conditioned zones on a single level. Its inter-
nal mass coefficient can either be 4 (lightweight) or 8
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Figure 2: Uncontrollable load profile: (left) Retail store (right)
Secondary school. Maximum AC capacity in green: (filled)
Warm and Hot environment, (dashed) Mild environment.
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Figure 3: Outside temperatures in July, for 3 environments.

(heavyweight). The aggregated uncontrollable load signal
is shown in Fig. 2 (left).

• Secondary school: a large commercial building, made
of > 40 conditioned zones, spread on two levels. Its
internal mass coefficient can either be 3 (lightweight) or 6
(heavyweight). The aggregated uncontrollable load signal
is shown in Fig. 2 (right).

Considering a single conditioned zone with a continuous
AC system is a simplification from reality, as in practice,
individual zone AC units would work asynchronously or be
part of a larger multizone AC system. Nevertheless, this leads
to results that are independent from a specific configuration
and indicative of the performance of each MPC formulation.
The system COP averages the group of individual units.

The outside temperature data depends on the climate zone
(Mild, Warm, or Hot) and represents a typical month in the
summer in US [13]. Fig. 3 statistically describes the hourly
signals used for the simulations. Depending on the simulated
climate, the AC thermal capacity in each building can take a
different value. In order to assess the shifting capability under
realistic DR events, three CPP events increase the prices of
energy for the three hottest days (see Table III).

Applying the various MPC methods to simulations of differ-
ent buildings and environments allows for a sensitivity analysis
of the results, instead of focusing on a specific configuration.
In this study, the MPC methods of Table I are evaluated on
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Figure 4: Relative decrease of the maximum power demand of
the month, compared to control Method A. For each control
method: (left bar) Retail store, (right bar) Secondary school.

all possible configuration triplets {blg type, internal mass,
climate}. This corresponds to a total of 12 simulations per
MPC method. Every simulation spans over an entire month,
with an MPC update every 15 minutes. At each time step, the
internal temperature is kept within bounds, while optimizing
the objective over a time horizon. The MPC horizon is set
to 12 hours, large enough to foresee the price, temperature,
and uncontrollable power variation. From an implementation
standpoint, the Python package cvxpy wraps the optimization
formulations, and calls the open-source ECOS solver [14];
the package control discretizes the continuous thermal model
(Eq.(4)), for both the simulation and the MPC model.

B. Results and discussion

Given the difference in the orders of magnitude between
the two buildings electricity demand, a relative comparison of
the results makes more sense. The method A "Energy Only"
will serve as the baseline, for it is the most encountered in the
literature. The results therefore present the increase/decrease
of the aforementioned metrics by the three other MPC control
methods relative to the "A. Energy Only" formulation.

Fig. 4 shows the relative decrease of the maximum peak
demand for the control methods B, C1, & C2 with respect
to the control method A. One observes a tremendous decrease
of the peak demand, ranging from 15% to 35%, due to the
fact that the method A does not take the demand cost into
account. The secondary school displays a larger gain than the
retail store. The explanation is twofold. First, the proportion of
controllable to uncontrollable load is higher for the secondary
school, on average over time. Second, the tariff E-19, which
the secondary school falls under, penalizes demand more than
the A-10. As for the peak performance, the method B reduces
peak demand slightly more than the methods C1&C2 for all of
the cases. This is due to the method B using the full demand
cost as the weight to penalize the demand over the MPC
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Figure 5: Relative decrease of the monthly bill, compared to
control Method A. For each control method: (left bar) Retail
store, (right bar) Secondary school.
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Figure 6: Relative loss of energy shifting potential during
CPP events, compared to control Method A. For each control
method: (left bar) Retail store, (right bar) Secondary school.

horizon. Nevertheless, the incremental methods C1&C2 only
worsen the peak by 2%, in the worst case.

Fig. 5 shows the relative decrease of the monthly bill
for the control methods B, C1, & C2 with respect to the
control method A. The large gap between the retail store and
the secondary school is mainly driven by the lower peak to
average ratio of the latter, strongly penalized by the tariff E-
19 with higher demand charges. Methods C1 & C2 show an
improvement of about 1-2% compared to the method B. The
improvement can be explained by a better management of
the TOU demand charges, whereas the method B does not
differentiate the periods of the day. Moreover, the incremental
demand charge feature of C1 & C2 enables them to dictate
load shifting with energy rate fluctuations. The knowledge of
the maximum peak in the month with method C2 slightly
improves the bill compared to method C1. This feature leads

to better pre-cooling decisions during the beginning of the
month, where method C1 does not risk setting a new peak.
While the bill gain difference seems low, it is to be compared
with an already-optimized system,

Fig. 6 shows the relative decrease (negative increase) of the
load shifting capacity for the control methods B, C1, & C2
with respect to the control method A. This metric is computed
by summing the energy consumption during the three CPP
events of the month. Method A is therefore the best, as it only
optimizes on energy cost and can shift the demand as much as
possible. Compared to this baseline, method B clearly lacks
the ability to shift load, especially under a tariff that strongly
penalizes the peak demand (secondary school). Incremental
methods C1 & C2 are capable of cutting the loss of load
shifting potential in half compared to method B. This effect
would even be more marked as the proportion of controllable
load is increased. This is due to the fact that these methods
leverage the knowledge of past behavior and prediction of
future behavior, specifically being able to trade off cost savings
from load shifting to cost increases from setting a new demand
peak. The prediction of monthly maximum peak demand
improves the shifting potential by about 1-2%.

Analyzing the details of timeseries power consumption
results allows for further understanding of metric trade-offs
and global trend of each method. Fig. 7 (left) plots the hourly
power consumption induced by each control method, averaged
over all of the simulations of the secondary school except
the CPP days. The four methods exhibit the same behavior
in the early morning (until 6am) and end of the day (from
5pm), due to the low risk of setting a new monthly peak.
As the first TOU energy rate increment appears, they all
pre-cool the zone. However, subsequent behavior diverges.
Method A reduces the energy as much as possible, whereas
incremental methods C1&C2 only slightly reduce it. Method
B keeps a constant increase in power demand, disregarding
the energy rate increase. At the hours before the on-peak
period, the method A fully pre-cools the building to the lower
bound of temperature to allow maximum free-float during the
subsequent period of higher energy price. Methods C1&C2
enable some pre-cooling, though better account for the tradeoff
between energy shifting and setting a new peak demand. The
monthly peak demand prediction in method C2 allows it to
provide slightly more energy shift, as it knows the monthly
peak will be set later anyway. Method B does not pre-cool at
all since the demand cost prevails on the energy cost.

Fig. 7 (right) presents the last CPP day of the month, for
a simulation of the secondary school (warm weather, large
internal mass). On this day, the hot temperature prevents
methods C1 and C2 from pre-cooling too much without setting
a new costly demand peak. Nevertheless, more pre-cooling
during the morning than method B still allows for more load
reduction during CPP hours, though less than method A.

IV. CONCLUSION

This study compares existing economic MPC formulations
applied to commercial buildings and introduces a new incre-



0 5 10 15 20
Hour

100

150

200

250

300

350

400

El
ec

tri
cit

y 
de

m
an

d 
[K

W
]

Meth. A
Meth. B
Meth. C1
Meth. C2

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

En
er

gy
 p

ric
e 

[$
/K

W
h]

Energy price

16

18

20

22

24

26

Ou
ts

id
e 

te
m

pe
ra

tu
re

 [C
]

Outside temp

00:00
27-Jul

00:00
28-Jul

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time

100

150

200

250

300

350

400

450

500

Po
we

r d
em

an
d 
(k
W
)

0.2

0.4

0.6

0.8

1.0

En
er
gy
 P
ric
e 
($
/k
W
h)

Meth. A
Meth. B
Meth. C1
Meth. C2
Energy price

Figure 7: Timeseries analysis of "secondary school" control methods: (left) hourly mean of power consumption, energy price
and outside temperature throughout all simulations (right) 15-min power consumption on the 3rd CPP event.

mental method that leverages past behavior of the building.
A large number of simulations were carried out on simplified
commercial building models, with different climates. Results
showed that the traditional MPC method of taking into ac-
count demand charges reduces both the peak demand and the
electricity bill relative to the solution optimizing for energy
costs only. However, it prevents the building from shifting load
when needed, such as during CPP events. The incremental
formulation improved the building responsiveness to price-
based DR signals, while similarly keeping constant or slightly
reducing the owner bill and maximum peak demand.

The simulation results highlight that multiple MPC formu-
lations can offer the same value for the user (in terms of utility
bill cost) but different grid service capabilities. Ongoing world
decarbonisation efforts increasingly encourage the deployment
of DR programs to incentivize load shifting and peak load
reduction. The tariff structures should, therefore, be carefully
designed to optimally leverage building load flexibility offered
by different MPC formulations.

ACKNOWLEDGMENT

This work was supported by Qatar Environment & En-
ergy Research Institute (QEERI). The research was also sup-
ported by the Assistant Secretary for Energy Efficiency and
Renewable Energy, Office of Building Technologies of the
U.S. Department of Energy, under Contract No. DE-AC02-
05CH11231. The authors would like to thank Max Chevron
for his help.

REFERENCES

[1] M. J. Michael, R. Matthew, R. Arthur, S. Maxine, and W. Steven, “Re-
port of the building energy efficiency subcommittee, to the secretary of
energy advisory board,” https://www.energy.gov/eere/buildings/building-
performance-database, 2012.

[2] Office of Energy Efficiency & Renewable Energy,
“About the commercial buildings integration program,”
https://www.energy.gov/eere/buildings/about-commercial-buildings-
integration-program, 2012.

[3] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC
control systems - A review of model predictive control (MPC),” Building
and Environment, vol. 72, pp. 343–355, 2014.

[4] S. Nolan and M. O’Malley, “Challenges and barriers to demand response
deployment and evaluation,” Applied Energy, vol. 152, pp. 1–10, 2015.

[5] D. Kim and J. E. Braun, “Development, implementation and perfor-
mance of a model predictive controller for packaged air conditioners in
small and medium-sized commercial building applications,” Energy and
Buildings, vol. 178, pp. 49–60, 2018.

[6] M. Jingran, S. J. Qin, L. Bo, T. Salsbury, J. Ma, and B. Li, “Economic
model predictive control for building energy systems,” 2011 IEEE PES
Innovative Smart Grid Technologies, 2011.

[7] T. Salsbury, P. Mhaskar, and S. J. Qin, “Predictive control methods to
improve energy efficiency and reduce demand in buildings,” Computers
and Chemical Engineering, vol. 51, pp. 77–85, 2013.

[8] Z. Wang, A. Babak, and S. Ratnesh, “Stochastic Demand Charge
Management for Commercial and Industrial Buildings,” 2017 IEEE
Power & Energy Society General Meeting, 2017.

[9] X. Li and J. Wen, “Review of building energy modeling for control
and operation,” Renewable and Sustainable Energy Reviews, vol. 37,
pp. 517–537, 2014.

[10] S. H. Lee and T. Hong, “Leveraging zone air temperature data to
improve physics-based energy simulation of existing buildings,” 15th
IBPSA Conference, pp. 528–535, 2017.

[11] H. Huang and C. Roussac, “Predicting peak energy demand in com-
mercial buildings under extreme conditions : by how much can we
improve accuracy ?” 2018 ACEEE Summer Study on Energy Efficiency
in Buildings, pp. 1–12, 2018.

[12] U.S. Department of Energy, “Commercial reference buildings,”
https://www.energy.gov/eere/buildings/commercial-reference-buildings,
accessed: 2018-10-30.

[13] National Renewable Energy Laboratory, “National solar radiation
database,” https://rredc.nrel.gov/solar/old_data/nsrdb/.

[14] A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in European Control Conference (ECC), 2013, pp.
3071–3076.


